

Capacity (LCR/MCR) & Operational Equipment Effectiveness (OEE)

LCR / MCR Definitions

• Lean Capacity Rate or LCR;

- shall mean the normal weekly number of Parts that can be constantly manufactured by Supplier (without overtime or additional shifts)
- Maximum Capacity Rate or MCR;
 - shall mean the maximum weekly number of Parts that can be temporarily manufactured by Supplier

LCR / MCR Calculations

- Normal Working hour
 - 24 Hour per day
 - 5 days per week
 - 30 parts per hour
- Example 1; 24 hr X 5 days X 30 parts X 85% (World class OEE)

LCR = 3060 parts per week

- Example 2; 24 hr X 6 days X 30 parts X 85% (World class OEE)
 - Supplier does have the possibility to work an extra day per week in overtime

MCR = 3672 parts per week

What is OEE?

- OEE; Overall Equipment Effetiveness
- OEE in french is TRG; Taux de Rendement Global
- A « best practices » metric, expressed in percentage, to monitor and improve the efficiency of a manufacturing process (automated or manual)
- A tool that measures and identifies the causes of productivity losses, classifying them into three categories:
 - Availability
 - Performance
 - Quality

What are the objectives of OEE?

- Evaluate the available capacity
- Increase production capacity and consistently maintain level over time
- Generate accurate production data for improved production planning
- Identify the sources and weight of inefficiencies to allow prioritization
- Example of Calculation
 - An equipment has a theoretical cycle time of 2 minutes (30 parts/hour)
 - Assuming the equipment produced 180 good parts on a 8 hour shift
 - 180 good parts @ 30 parts/hour = 6 hours production
- > 6 theoretical hours of production / 8 true hours of production X 100 = **OEE 75%**

Definitions, calculation....

- We want to calculate a single 8-hour shift OEE of an equipment that has a theoretical speed of 30 parts/hours using the following factors:
 - Loss of 3 hours due to equipment downtime
 - Loss of 25 parts during the Operating Time due to slower equipment speed
 - 5 parts did not meet quality specs and were rejected

•	Availability (TU) = <u>(8 hours – 3 hours)</u> 8 hours	X 100 = 62,5%	Output of 120 good parts instead of 240 (30 parts /hr X 8 hr)
•	Performance (TP) = (125 parts @ 30 parts/hr) (8 hours – 3 lossed hours)	X 100 = 83,3%	
•	Quality (TQ) = (125 parts – 5 rejected parts) 125 produced parts	X 100 = 96,0%	OEE of 50%

What is a world class OEE?

 A World Class OEE for discrete manufacturing plants is considered to be 85% or better

OEE Factor	WORLD CLASS
OEE	85 %
Availability	90 %
Performance	95%
Quality	99 %

TOP 6 Big Losses

- Breakdowns
 - Tooling and equipment failures, unexpected maintenance
- Setups and Adjustments
 - Planned setups, material and labor shortages, warmup time
- Small Stops
 - Jams, misfeeds, sensor block, flow obstructed, cleanup
- Reduced Speed
 - Rough running, employee inefficiency, equipment wear
- Startup Rejects
 - Scrap, rework, incorrect assembly
- Production Rejects
 - Scrap, rework, incorrect assembly

