

Capacity (LCR/MCR) \& Operational Equipment Effectiveness (OEE)

LCR / MCR Definitions

- Lean Capacity Rate or LCR;
- shall mean the normal weekly number of Parts that can be constantly manufactured by Supplier (without overtime or additional shifts)
- Maximum Capacity Rate or MCR;
- shall mean the maximum weekly number of Parts that can be temporarily manufactured by Supplier

LCR / MCR Calculations

- Normal Working hour

- 24 Hour per day
- 5 days per week
- 30 parts per hour
- Example 1; 24 hr X 5 days X 30 parts X 85\% (World class OEE)

$$
\text { LCR = } 3060 \text { parts per week }
$$

- Example 2; 24 hr X 6 days X 30 parts X 85\% (World class OEE)
- Supplier does have the possibility to work an extra day per week in overtime

MCR = 3672 parts per week

What is OEE?

- OEE; Overall Equipment Effetiveness
- OEE in french is TRG; Taux de Rendement Global
- A « best practices » metric, expressed in percentage, to monitor and improve the efficiency of a manufacturing process (automated or manual)
- A tool that measures and identifies the causes of productivity losses, classifying them into three categories:
- Availability
- Performance
- Quality

What are the objectives of OEE?

- Evaluate the available capacity
- Increase production capacity and consistently maintain level over time
- Generate accurate production data for improved production planning
- Identify the sources and weight of inefficiencies to allow prioritization
- Example of Calculation
- An equipment has a theoretical cycle time of 2 minutes (30 parts/hour)
- Assuming the equipment produced 180 good parts on a 8 hour shift
- 180 good parts @ 30 parts/hour $=6$ hours production
>6 theoretical hours of production / 8 true hours of production $\times 100=$ OEE 75\%

Definitions, calculation....

- We want to calculate a single 8 -hour shift OEE of an equipment that has a theoretical speed of 30 parts/hours using the following factors:
- Loss of 3 hours due to equipment downtime
- Loss of 25 parts during the Operating Time due to slower equipment speed
- 5 parts did not meet quality specs and were rejected
- Availability (TU) =
(8 hours - 3 hours)
8 hours
X $100=62,5 \%$
Output of 120 good parts instead of 240 (30 parts /hr X 8 hr)

X $100=83,3 \%$
(8 hours - 3 lossed hours)

- Quality (TQ) = (125 parts - 5 rejected parts)
$X 100=96,0 \%$
125 produced parts

What is a world class OEE?

- A World Class OEE for discrete manufacturing plants is considered to be 85% or better

OEE Factor	WORLD CLASS
OEE	85%
Availability	90%
Performance	95%
Quality	99%

TOP 6 Big Losses

- Breakdowns
- Tooling and equipment failures, unexpected maintenance
- Setups and Adjustments
- Planned setups, material and labor shortages, warmup time
- Small Stops
- Jams, misfeeds, sensor block, flow obstructed, cleanup
- Reduced Speed
- Rough running, employee inefficiency, equipment wear
- Startup Rejects
- Scrap, rework, incorrect assembly
- Production Rejects
- Scrap, rework, incorrect assembly

C

